Part Number Hot Search : 
H1100 CED75A3 D1015UK XR4151 115KFKE3 E105M 1000G C331M
Product Description
Full Text Search
 

To Download IRFS4115-7PPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  11/7/08 www.irf.com 1 hexfet   power mosfet benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g gds gate drain source IRFS4115-7PPBF             v dss 150v r ds(on) typ. 10.0m  max . 11.8m  i d 105a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.40 c/w r ja junction-to-ambient (pcb mount)  ??? 40 300 max. 105 74 420 230 see fig. 14, 15, 22a, 22b, 380 32 -55 to + 175 20 2.5 10lb in (1.1n m)

 2 www.irf.com s d g 
 repetitive rating; pulse width limited by max. junction temperature. limited by t jmax , starting t j = 25c, l = 0.115mh r g = 25 , i as = 63a, v gs =10v. part not recommended for use above this value. i sd 63a, di/dt 2510a/ s, v dd v (br)dss , t j 175c. pulse width 400 s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.   r is measured at t j approximately 90c.  
jc     static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 150 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.18 ??? v/c r ds(on) static drain-to-source on-resistance ??? 10. 11.8 m v gs(th) gate threshold voltage 3.0 ??? 5.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g(int) internal gate resistance ??? 2.1 ??? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 93 ??? ??? s q g total gate charge ??? 73 110 nc q gs gate-to-source charge ??? 28 ??? q gd gate-to-drain ("miller") charge ??? 28 ??? q sync total gate charge sync. (q g - q gd ) ??? 45 ??? t d(on) turn-on delay time ??? 18 ??? ns t r rise time ??? 50 ??? t d(off) turn-off delay time ??? 37 ??? t f fall time ??? 23 ??? c iss input capacitance ??? 5320 ??? c oss output capacitance ??? 490 ??? c rss reverse transfer capacitance ??? 110 ??? pf c oss eff. (er) effective output capacitance (energy related)  ??? 450 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 520 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 104 a (body diode) i sm pulsed source current ??? ??? 420 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 82 ??? ns t j = 25c v r = 130v, ??? 99 ??? t j = 125c i f = 63a q rr reverse recovery charge ??? 271 ??? nc t j = 25c di/dt = 100a/ s  ??? 385 ??? t j = 125c i rrm reverse recovery current ??? 6.0 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v ds = 50v, i d = 62a i d = 63a v gs = 20v v gs = -20v mosfet symbol showing the v ds = 75v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 120v  v gs = 0v, v ds = 0v to 120v  t j = 25c, i s = 63a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 3.5ma  v gs = 10v, i d = 63a  v ds = v gs , i d = 250 a v ds = 150v, v gs = 0v v ds = 150v, v gs = 0v, t j = 125c i d = 63a r g = 2.1 v gs = 10v  v dd = 98v i d = 63a, v ds =0v, v gs = 10v

 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v 60 s pulse width tj = 25c 5.0v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v 60 s pulse width tj = 175c 5.0v 3.0 4.0 5.0 6.0 7.0 8.0 9.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 50v 60 s pulse width t j = 25c t j = 175c 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 63a v gs = 10v 0 20406080100 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 120v v ds = 75v v ds = 30v i d = 63a

 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , casetemperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 140 150 160 170 180 190 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 3.5ma 0 20 40 60 80 100 120 140 v ds, drain-to-source voltage (v) 0 1 2 3 4 e n e r g y ( j ) 0.1 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 1000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 14a 24a bottom 63a

 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 22a, 22b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 240 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 63a ri (c/w) ? (sec) 0.015402 0.00001 0.056989 0.000065 0.180208 0.001377 0.146323 0.010705 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / i / ri c 4 4 r 4 r 4

 6 www.irf.com  
    fig 16. threshold voltage vs. temperature  
    

     
    -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 6.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 10 20 30 40 50 i r r m - ( a ) i f = 42a v r = 127v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 10 20 30 40 50 i r r m - ( a ) i f = 63a v r = 127v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 400 800 1200 1600 2000 2400 q r r - ( n c ) i f = 63a v r = 127v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 400 800 1200 1600 2000 2400 q r r - ( n c ) i f = 42a v r = 127v t j = 125c t j = 25c

 www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. !  
   for n-channel hexfet   power mosfets  
     ? 
     ?     ?

        p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period "       " + - + + + - - -
   ?      !  ?   " #$## ?        %  && ? #$##'$


  d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   ( ) 1 *  %   0.1 %
  
   !" + -    

 8 www.irf.com d 2 pak - 7 pin package outline dimensions are shown in millimeters (inches)  
         
    

 www.irf.com 9   d 2 pak - 7 pin part marking information d 2 pak - 7 pin tape and reel data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 11/08  
         
    


▲Up To Search▲   

 
Price & Availability of IRFS4115-7PPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X